Добро пожаловать на форум co2-extract.ru!
 
Форум
Вы не авторизованы!      [ Войти ]  |  [ Регистрация ]
Форум » Теория » Тема: Лекция №3 Обмен углеводов -- Страница 1  Перейти в: 

Новинки нашего магазина
Syn-Coll (Син-Колл) Аналог, 1000 ppm
Syn-Coll (Син-Колл) Аналог, 1000 ppm
260.00 руб.
EverLipid™ EFA (Эвер Липид) - фосфолипиды для волос и кожи
EverLipid™ EFA (Эвер Липид) - фосфолипиды для волос и кожи
250.00 руб.
Xanthan Gum, Ксантан косметический - для прозрачных гелей, КНР
Xanthan Gum, Ксантан косметический - для прозрачных гелей, КНР
190.00 руб.
Миндаля сладкого масло натуральное чистое, Испания, ОПТ 1 л
Миндаля сладкого масло натуральное чистое, Испания, ОПТ 1 л
990.00 руб.
Lanol 99 (Ланол 99) АНАЛОГ, 100 мл
Lanol 99 (Ланол 99) АНАЛОГ, 100 мл
360.00 руб.
Манго экстракт водно-глицериновый 40%
Манго экстракт водно-глицериновый 40%
190.00 руб.
Vitamin C стабильный (Витамин C) Magnesium Ascorbyl Phosphate (MAP) ОПТ
Vitamin C стабильный (Витамин C) Magnesium Ascorbyl Phosphate (MAP) ОПТ
9,990.00 руб.
Сверхкритический CO2 экстракт воробейника, нафтохинонов (шиконин) 20%
Сверхкритический CO2 экстракт воробейника, нафтохинонов (шиконин) 20%
290.00 руб.
Силикон оливковый (растительный), 50 мл
Силикон оливковый (растительный), 50 мл
290.00 руб.

Отправитель Сообщение
Юнона
Зарегистрированный пользователь


Из: планета Земля)
Сообщения: 218

 Лекция №3 Обмен углеводов
Отправлен: 02-12-2014 18:02
 
Лекция №3 Обмен углеводов
Обмен углеводов
ОБМЕН УГЛЕВОДОВ
1. Основные углеводы животного организма, их биологическая роль.
2. Превращение углеводов в органах пищеварительной системы.
3. Биосинтез и распад гликогена в тканях.
4. Гликогеновые болезни.
Углеводы — это полиоксикарбонильные соединения и их производные.
Основными углеводами организма человека являются:
1. Моносахариды (глицеральдегид, диоксиацетон,эритроза, рибоза, дезоксирибоза, рибулоза, ксилулоза,глюкоза, галактоза, фруктоза, манноза, арабиноза и др.);
2. Олигосахариды (мальтоза, лактоза, сахароза);
3. Гомополисахариды (крахмал, гликоген, клетчатка);
4. Гетерополисариды (гиалуроновая кислота, хондроитинсульфат, дерматансульфат, кератансульфат, гепарин).

________________________________________
 3.1. Биологическая роль углеводов
 3.2. Превращение углеводов в пищеварительном тракте
 3.3. Биосинтез и распад гликогена
 3.4. Основные пути катаболизма глюкозы
 3.4.1. Анаэробный гликолиз
 3.4.2. Аэробный гликолиз (гексозодифосфатный путь)
 3.4.3. Гексозомонофосфатный путь
 3.4.4. Глюконеогенез
Раздел верхнего уровня
Следующий раздел

________________________________________
3.1. Биологическая роль углеводов
БИОЛОГИЧЕСКАЯ РОЛЬ УГЛЕВОДОВ:
1. ЭНЕРГЕТИЧЕСКАЯ.
При окислении1 г углеводов до конечных продуктов (СО2 и Н2О) выделяется 4,1-ккал энергии. На долю углеводов приходится около 60-70 % всей суточной калорийности пищи. Суточная потребность в углеводах для взрослого человека в среднем массой 60-70 кг составляет около 400-500 г.
2. СТРУКТУРНАЯ.
Углеводы используется как строительный материал для образования структурных компонентов клеток (гликолипиды, гликопротеины, гетерополисахариды межклеточного вещества).
3.РЕЗЕРВНАЯ. Углеводы откладываются в клетках в виде резервного полисахарида гликогена.
4. ЗАЩИТНАЯ.
Гликопротеины принимают участие в образовании антител. Гиалуроновая кислота, входя в состав соединительной ткани, препятствует проникновению чужеродных веществ. Гетерополисахариды участвуют в образовании вязких секретов покрывающей слизистые оболочки дыхательных путей, мочевыводящих путей, пищеварительного тракта, предохраняя их от повреждений.
5. РЕГУЛЯТОРНАЯ.
Некоторые гормоны гипофиза, щитовидной железы являются гликопротеинами. Простаноиды и лейкотриены образуются из полиненасыщенных высших жирных кислот и являются регуляторами обмена веществ.
6. Участвуют в процессах узнавания клеток.
Важная роль при этом отводятся сиаловым кислотам и нейраминовой кислоте.
7. Гетерополисахариды входя в состав оболочек эритроцитов, определяют группы крови.
8. Участвуют в процессах свёртывания крови, входя в состав фибриногена и протромбина. Препятствуют свёртыванию крови, входя в состав гепарина.
?
Предыдущий раздел
Раздел верхнего уровня
Следующий раздел

________________________________________
3.2. Превращение углеводов в пищеварительном тракте

ПРЕВРАЩЕНИЕ УГЛЕВОДОВ В
ПИЩЕВАРИТЕЛЬНОМ ТРАКТЕ
Основными углеводами пищи для организма человека являются: крахмал, гликоген, сахароза, лактоза.
Поступивший с пищей крахмал (гликоген) в ротовой полости подвергается гидролизу под действием альфа-амилазы слюны, которая относится к эндоамилазам. Она расщепляет альфа (1,4)-гликозидные связи в структуре крахмала. РН оптимум для альфа-амилазы слюны находится в слабощелочной среде (рН = 7-8). Поскольку пища в ротовой полости находится недолго, то крахмал переваривается лишь частично. Его гидролиз завершается образованием амилодекстринов .
Далее пища поступает в желудок. Слизистой оболочкой желудка гликозидазы не вырабатываются. В желудке среда резко кислая (рН=1,5-2,5), поэтому действие альфа-амилазы слюны внутри пищевого комка прекращается. Однако в более глубоких слоях действие фермента продолжается, и крахмал успевает пройти следующую стадию гидролиза, с образованием эритродекстринов.
Основным местом переваривания крахмала служит тонкий отдел кишечника. Здесь проходит наиболее важная фаза гидролиза крахмала. В переваривании крахмала принимает участие ферменты, вырабатываемые в поджелудочной железе (альфа-амилаза, амило-1,6-гликозидаза и олиго-1,6-гликозидаза ).
Выделяющийся панкреатический сок содержит бикарбонаты , которые принимают участие в нейтрализации кислого желудочного содержимого, создаётся слабощелочная среда (рН=8-9) — оптимальная для гликозидаз. Образующиеся катионы (Na+,K+) принимают участие в активации ферментов.
Три панкреатических фермента завершают гидролитический разрыв внутренних гликозидных связей в структуре крахмала. Эритродекстрины переходят в ахродекстрины .
Альфа-амилаза завершает разрыв внутренних альфа(1,4)-гликозидных связей, амило-1,6-гликозидаза гидролитически расщепляет внутренние альфа-1,6-гликозидные связи в точках ветвления, а олиго-1,6-гликозидаза является терминальной в этом процессе.
Таким образом, три панкреатических фермента завершают гидролиз крахмала в кишечнике с образованием мальтоз (изомальтоз). Образованная мальтоза – является только временным продуктом гидролиза крахмала, т.к. она после всасывания в энтероцитах гидролизуется под действием мальтаз (изомальтаз) до глюкоз .
В составе пищи в организм человека поступают и дисахариды: лактозы и сахарозы, которые подвергаются гидролизу только в тонком кишечнике. В клетках кишечника, кроме мальтаз синтезируются лактазы и сахаразы , которые осуществляют гидролиз соответствующих дисаридов пищи с образованием глюкоз, галактоз, фруктоз.
Продукты полного гидролиза — моносахариды — всасываются в кровь и на этом завершается начальный этап обмена углеводов — пищеварение.
С пищей в организм человека поступает клетчатка , которая в пищеварительном тракте не переваривается, поскольку отсутствуют бета -гликозидазы.
Однако биологическая роль клетчатки велика: она формирует пищевой комок, продвигаясь по желудочно-кишечному тракту она раздражает слизистые оболочки усиливая сокоотделение, клетчатка усиливает перистальтику кишечника, нормализует кишечную микрофлору.
Достигая толстого отдела кишечника клетчатка под действием ферментов условно-патогенной микрофлоры подвергается брожению с образованием глюкозы, лактозы и газообразных веществ.
Предыдущий раздел
Раздел верхнего уровня
Следующий раздел

________________________________________
3.3. Биосинтез и распад гликогена

БИОСИНТЕЗ И РАСПАД ГЛИКОГЕНА В ТКАНЯХ.
ГЛИКОГЕНОВЫЕ БОЛЕЗНИ.
Было установлено, что гликоген может синтезироваться практически во всех органах и тканях. Однако наибольшая его концентрация обнаружена в печени (2-6%) и мышцах (0,5-2%). Поскольку мышечная масса организма человека велика, то большая часть гликогена организма содержится в мышцах. Глюкоза из крови легко проникает в клетки органов и тканей, проходя через биологические мембраны клеток. Как только глюкоза поступает в клетку, она метаболизируется в ней в результате первой химической реакции. фосфорилирование глюкозы происходит в присутствии АТФ и фермента — гексокиназы. Глюкоза превращается в глюкозо-6-фосфат . Этот эфир глюкозы теперь будет использоваться в анаболических и катаболических реакциях. Глюкоза из клетки может выйти только после реакции гидролиза при участии глюкозо-6-фосфатазы. Этот фермент есть в печени, почках, эпителии кишечника. В других органах, тканях его нет. Процесс биосинтеза гликогена протекает в 4 стадии:

Гликогенсинтаза – является трансферазой, которая переносит остатки глюкозы, входящие в УДФ- глюкозу, на гликозидную связь остаточного в клетке гликогена, при этом образуется альфа(1,4)-гликозидные связи.
Образование альфа(1,6)-гликозидных связей в точках ветвления гликогена катализирует специальный гликоген-ветвящий фермент.
Образовавшийся в последней реакции УДФ, превращается в УТФ, при этом при биосинтезе гликогена поглощается еще 1 молекула АТФ.
Таким образом, на каждую молекулу глюкозы, включающуюся в структуру гликогена, расходуется 2 молекулы АТФ.
Гликоген в клетках накапливается во время пищеварения и рассматривается как резервная форма глюкозы, которая используется клетками в промежутках между приёмами пищи.

РАСПАД ГЛИКОГЕНА

Существуют 2 пути распада гликогена в тканях:
1. фосфоролитический путь (основной путь)
Протекает в печени, почках, эпителии кишечника. Схематически его можно записать в виде 3 реакций:

2. амилолитический путь (неосновной).
Протекает в печени при участии 3 ферментов: альфа -амилазы, амило-1,6-гликозидазы, гамма — амилазы.
Альфа – амилаза расщепляет в структуре крахмала альфа-1,4-гликозидные связи, амило-1,6-гликозидаза-гликозидные связи в точках ветвления, гамма-амилаза гидролизует концевые гликозидные связи в боковых ветвях гликогена.

ГЛИКОГЕНОЗЫ — болезни, связанные с нарушением процессов распада гликогена, при этом в клетках печени, почек, мышц гликоген накапливается в большом количестве. Клинически эти заболевания проявляются увеличением печени, мышечной слабостью, гипоглюкоземией натощак. Больные умирают в раннем детском возрасте. Наиболее часто встречаются следующие заболевания:
1.Болезнь Герса (генетический дефект фермента — фосфорилазы печени ).
2. Болезнь Мак-Ардля (генетический дефект фермента — фосфорилазы мышц ).
3. Болезнь Помпе (генетический дефект фермента — амило- 1,4-гликозидазы ).
4. Болезнь Кори (генетический дефект фермента — амило-1.6-гликозидазы ).
5. Болезнь Гирке (генетический дефект фермента — глюкозо-
6-фосфатазы).
АГЛИКОГЕНОЗЫ- болезни связанные с нарушением процессов синтеза гликогена в тканях. Характерными проявлениями нарушения синтеза гликогена являются: резкая гипогликемия натощак, рвоты, судороги, потеря сознания. Углеводное голодание клеток мозга приводит к нарушению психо-физического развития у детей. Смерть наступает в раннем детском возрасте. Наиболее часто встречаются:
1. Болезнь Льюиса (генетический дефект фермента – гликогенсинтазы ).
2. Болезнь Андерсена ( генетический дефект фермента — гликоген-ветвящего ).
?
Раздел верхнего уровня
Следующий раздел

________________________________________
3.4.1. Анаэробный гликолиз
В зависимости от функционального состояния организма, клетки органов и тканей могут находиться как в условиях достаточного снабжения кислородом, так и испытывать его недостаток, то есть находится в условиях гипоксии. Если катаболизму подвергается глюкоза, то процесс называется ГЛИКОЛИЗОМ, если распадается глюкозный остаток гликогена –ГЛИКОГЕНОЛИЗОМ. В связи с этим катаболизм углеводов может рассматриваться с двух позиций:
1.В АНАЭРОБНЫХ УСЛОВИЯХ
2.В АЭРОБНЫХ УСЛОВИЯХ.
АНАЭРОБНЫЙ ГЛИКОЛИЗ (ГЛИКОГЕНОЛИЗ) протекает в цитоплазме клеток. Окисление глюкозы или глюкозного остатка гликогена всегда завершается образованием конечного продукта этого процесса- молочной кислоты.
Окисление глюкозы и глюкозного остатка гликогена в тканях отличается только в начальных стадиях превращения, до образования глюкозо-6-фосфата. Дальнейшее окисление углеводов в тканях, как в ана-, так и в аэробных условиях полностью совпадает до стадии образования пирувата.
Процесс анаэробного гликолиза сложный и многоступенчатый. Условно его можно разделить на 2 стадии:
-первая стадия заканчивается образованием из гексозы двух триоз: -диоксиацетонфосфата и глицеральдегид-3-фосфата.
-Вторая стадия называется стадией гликолитической оксидоредукции. Эта стадия катаболизма наиболее важная, поскольку она сопряжена с образованием АТФ, за счёт реакций субстратного фосфорилирования, окислением глицральдегид -3-фосфата, восстановлением пирувата до лактата.
Схематически реакции катаболизма глюкозы и гликогена в тканях до стадии образовании глюкозо-6 фосфата можно записать следующим образом:

Дальнейшее окисление углеводов в анаэробных условиях до образования лактата полностью совпадают:

В процессе окисления глюкозы было израсходовано 2 молекулы АТФ (гексокиназная и фосфофруктокиназная реакции). С этапа образования триоз идёт одновременное их окисление. В результате этих реакций образуется энергия в виде АТФ за счёт реакций субстратного фосфорилирования (глицераткиназная и пируваткиназная реакции).
На этапе гликолитической оксидоредукции идёт окисление глицеральдегид-3-фосфата в присутствии НЗРО4 и НАД- зависимой дегидрогеназы, которая при этом восстанавливается до НАДН2. Митохондрии в анаэробных условиях блокированы, поэтому выделенные в результате окисления молекулы НАДН2 находится в среде до тех пор, пока не образуется субстрат, способный принять их. Пируват, принимая НАДН2, восстанавливается до лактата, завершая тем самым внутренний-окислительно-восстановительный этап гликолиза. НАД- окисленный выделяется и может вновь участвовать в окислительном процессе, выполняя роль переносчиков водорода.
3 реакции гликолиза являются необратимыми:
1.гексокиназная.
2.фосфофруктокиназная.
3.пируваткиназная.
Энергетический эффект окисления 1 молеклы глюкозы составляет 2 АТФ, глюкозного остатка гликогена-3 АТФ.
Биологическая роль анаэробного гликолиза — энергетическая.
Анаэробный гликолиз является единственным процессом, продуцирующим энергию в форме АТФ в клетке в бескислородных условиях. В эритроцитах гликолиз является единственным процессом, продуцирующим АТФ и поддерживающим биоэнергетику, для сохранения их функции и целостности.
?
Предыдущий раздел
Раздел верхнего уровня
Следующий раздел

________________________________________
3.4.2. Аэробный гликолиз (гексозодифосфатный путь)
ГЕКСОЗОДИФОСФАТНЫЙ ПУТЬ.
Это классический путь аэробного катаболизма углеводов в тканях протекает в цитоплазме до стадии образования пирувата и завершается в митохондриях с образование конечных продуктов СО2 и Н2О
Когда в клетки начинает поступать кислород- происходит подавление анаэробного гликолиза. При этом снижается потребление глюкозы, блокируется образование лактата. Эффект торможения анаэробного гликолиза дыханием получил название эффекта Пастера. Окисление углеводов до стадии образования пирувата происходит в цитоплазме клеток. Затем пируват поступает в митохондрии, где в матриксе подвергается дальнейшему окислению. В результате реакции окислительного декарбоксилирования образуется ацетил-КоА который, в дальнейшем окисляется с участием ферментов цикла Кребса и сопряженных с ним ферментов дыхательной цепи митохондрий (ЦПЭ). Происходит образование конечных продуктов (СО2 иН2О), выделяется энергия в форме АТФ. Н2О образуется на этапе превращения:
1. ГЛИЦЕРАЛЬДЕГИД-3-ФОСФАТА
2. 2-ФОСФОГЛИЦЕРИНОВОЙ КИСЛОТЫ
3. ПИРУВАТА
4. Альфа- КЕТОГЛУТАРОВОЙ КИСЛОТЫ
5. СУКЦИНАТА
4. ИЗОЦИТРАТА
7. МАЛАТА
СО2 образуется на этапе превращения:
1. ПИРУВATА
2. ОКСАЛОСУКЦИНАТА
3. Альфа — КЕТОГЛУТАРОВОЙ КИСЛОТЫ. АТФ образуется:
А. За счёт реакций СУБСТРАТНОГО ФОСФОРИЛИРОВАНИЯ на этапе превращения:
1. 1,3-ДИФОСФОГЛИЦЕРИНОВОЙ К-ТЫ
2. 2-ФОСФОЕНОЛПИРУВАТА
3. СУКЦИНИЛА-КОА
В. За счёт реакций ОКИСЛИТЕЛЬНОГОФОСФОРИЛИРОВАНИЯ на этапе превращения:
1. ГЛИЦЕРАЛЬДЕГИД-3-ФОСФАТА
2. ПИРУВАТА
3. ИЗОЦИТРАТА
4. альфа – КЕТОГЛУТАРОВОЙ КИСЛОТЫ
5. СУКЦИНАТА
6. МАЛАТА.
Энергетический эффект окисления глюкозы в аэробных условиях составляет 38 АТФ, глюкозного остатка гликогена 39 АТФ.

рис. Аэробный распад глюкозы
?
Предыдущий раздел
Раздел верхнего уровня
Следующий раздел

________________________________________
3.4.2. Аэробный гликолиз (гексозодифосфатный путь)
ГЕКСОЗОДИФОСФАТНЫЙ ПУТЬ.
Это классический путь аэробного катаболизма углеводов в тканях протекает в цитоплазме до стадии образования пирувата и завершается в митохондриях с образование конечных продуктов СО2 и Н2О
Когда в клетки начинает поступать кислород- происходит подавление анаэробного гликолиза. При этом снижается потребление глюкозы, блокируется образование лактата. Эффект торможения анаэробного гликолиза дыханием получил название эффекта Пастера. Окисление углеводов до стадии образования пирувата происходит в цитоплазме клеток. Затем пируват поступает в митохондрии, где в матриксе подвергается дальнейшему окислению. В результате реакции окислительного декарбоксилирования образуется ацетил-КоА который, в дальнейшем окисляется с участием ферментов цикла Кребса и сопряженных с ним ферментов дыхательной цепи митохондрий (ЦПЭ). Происходит образование конечных продуктов (СО2 иН2О), выделяется энергия в форме АТФ. Н2О образуется на этапе превращения:
1. ГЛИЦЕРАЛЬДЕГИД-3-ФОСФАТА
2. 2-ФОСФОГЛИЦЕРИНОВОЙ КИСЛОТЫ
3. ПИРУВАТА
4. Альфа- КЕТОГЛУТАРОВОЙ КИСЛОТЫ
5. СУКЦИНАТА
4. ИЗОЦИТРАТА
7. МАЛАТА
СО2 образуется на этапе превращения:
1. ПИРУВATА
2. ОКСАЛОСУКЦИНАТА
3. Альфа — КЕТОГЛУТАРОВОЙ КИСЛОТЫ. АТФ образуется:
А. За счёт реакций СУБСТРАТНОГО ФОСФОРИЛИРОВАНИЯ на этапе превращения:
1. 1,3-ДИФОСФОГЛИЦЕРИНОВОЙ К-ТЫ
2. 2-ФОСФОЕНОЛПИРУВАТА
3. СУКЦИНИЛА-КОА
В. За счёт реакций ОКИСЛИТЕЛЬНОГОФОСФОРИЛИРОВАНИЯ на этапе превращения:
1. ГЛИЦЕРАЛЬДЕГИД-3-ФОСФАТА
2. ПИРУВАТА
3. ИЗОЦИТРАТА
4. альфа – КЕТОГЛУТАРОВОЙ КИСЛОТЫ
5. СУКЦИНАТА
6. МАЛАТА.
Энергетический эффект окисления глюкозы в аэробных условиях составляет 38 АТФ, глюкозного остатка гликогена 39 АТФ.

рис. Аэробный распад глюкозы
Предыдущий раздел
Раздел верхнего уровня
Следующий раздел

________________________________________
3.4.3. Гексозомонофосфатный путь
ГЕКСОЗОМОНОФОСФАТНЫЙ ПУТЬ ПРЕВРАЩЕНИЯ ГЛЮКОЗЫ
В ТКАНЯХ, ХИМИЗМ РЕАКЦИЙ.
Окисление глюкозы по этому пути протекает в цитоплазме клеток и представлено двумя последовательными ветвями: окислительной и неокислительной. Особенно активно этот путь протекает в тех органах и тканях, в которых активно синтезируются липиды (печень, почки, жировая и эмбриональная ткань, молочные железы).
Биологическая роль этого пути окисления глюкозы связывается прежде всего с производством двух веществ:
1.НАДФ*Н2, который в отличие от НАДН2 , не окисляется в дыхательной цепи митохондрий, а используется в клетках в реакциях синтеза и восстановления и гидроксилирования веществ.
2.РИБОЗО-5-ФОСФАТ и его производные, которые используются в клетке для синтеза важнейших биологических молекул: нуклеиновых кислот (ДНК, РНК), нуклеозидтрифосфатов(НТФ) коферментов (, НАД, ФАД, Н5КОА).
Биологическая роль:1 .АНАБОЛИЧЕСКАЯ.
2.ЭНЕРГЕТИЧЕСКАЯ. При низком энергетическом статусе клетки излишки пентоз путём обратных реакций неокислительного пути превращаются в глицеральдегид-3-фосфат и фруктозо-6-фосфат которая затем включаются в анаэробный гликолиз, поддерживая биоэнергетику клеток в кризисных ситуациях.
Гексозомонофосфатный путь катаболизма глюкозы ещё обозначают как пентозный путь.
Окислительная стадия гексозомонофосфатного пути катаболизма глюкозы отличается от классического — гексозодифосфатного пути с этапа превращения глюкозо-6-фосфата:

рис. Окислительная стадия гексозомонофосфатного пути катаболизма глюкозы

Неокислительная стадия гексозомонофосфатного пути катаболизма глюкозы представлена двумя ТРАНСКЕТОЛАЗНЫМИ реакциями и одной ТРАНСАЛЬДОЛАЗНОЙ.
В результате этих реакций образуются субстраты для ГЛИКОЛИЗА, а также вещества характерные для ПЕНТОЗНОГО пути.
1. ТРАНСКЕТОЛАЗНЫЕ реакции:

2. ТРАНСАЛЬДОЛАЗНАЯ реакция:
А) СЕДОГЕПТУЛОЗО-7-Ф + ГЛИЦЕРАЛЬД-3-Ф = ФРУКТОЗО-6-Ф + ЭРИТРОЗО-4-Ф.
Баланс окислительной и неокислительной стадий гексозомонофосфатного пути превращения глюкозы можно записать в виде суммарного уравнения реакции.

Предыдущий раздел
Раздел верхнего уровня

________________________________________
3.4.4. Глюконеогенез
ГЛЮКОНЕОГЕНЕЗ
Основными источниками глюкозы для организма человека являются:
1. углеводы пищи;
2. гликоген тканей;
3. глюконеогенез.
ГЛЮКОНЕОГЕНЕЗ — это биосинтез глюкозы из неуглеводных предшественников, главными из которых являются ПИРУВАТ, ЛАКТАТ, ГЛИЦЕРИН, МЕТАБОЛИТЫ ЦТК КРЕБСА, АМИНОКИСЛОТЫ.
ГЛЮКОНЕОГЕНЕЗ возможен не во всех тканях. Главным местом синтеза глюкозы является печень, в меньшей степени процесс идёт в почках и слизистой кишечника. Биологическая роль глюконеогенеза заключается не только в синтезе глюкозы, но и в возвращении лактата, образованного в реакциях анаэробного ГЛИКОЛИЗА, в клеточный фонд углеводов. За счет этого процесса поддерживается уровень глюкозы в тканях в кризисных ситуациях (при углеводном голодании, сахарном диабете, тканевой гипоксии).
Большинство реакций ГЛЮКОНЕОГЕНЕЗА представляют собой обратные реакции ГЛИКОЛИЗА, за исключением трёх термодинамически необратимых: ПИРУВАТКИНАЗНОЙ, ФОСФОФРУКТОКИНАЗНОЙ, ГЕКСОКИНАЗНОЙ. Эти реакции при ГЛЮКОНЕОГЕНЕЗЕ имеют обходные пути и связаны с образованием 2-фосфоенолпирувата, фруктозо-6-фосфата и глюкозы.

Обходные реакции

Образовавшаяся в реакциях глюконеогенеза, глюкоза может вновь участвовать в клеточном метаболизме как пластический, энергетический материал, откладываться про запас в виде гликогена.


Статистика

Сейчас посетителей на форуме: 42 Гости
Всего сообщений: 131682
Всего тем: 2572
Зарегистрировано пользователей: 32967
Страница сгенерирована за: 0.3831 секунд

Копирование материалов сайта и форума co2-extract.ru запрещено. © co2-extract.ru 2012-2024 г.
Copyright © 2009 7910 e-commerce